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Abstract. Ion polarizabilities derived from low-frequency precision measurements of the
dielectric constants of single crystals of more than 120 different oxides have recently been
published but have proved difficult to interpret in terms of classical theory. The latter predicts
that the polarizability of an ion should be proportional to the cube of its radius. We present a
new approach to the analysis of the experimental data which clearly demonstrates a square law
dependence, in agreement with the quantum mechanically based result expected for a purely
electronic polarizability. There is then a demonstrable relationship between the low-frequency
polarizability of an ion and the orbital angular momentum quantum number associated with its
outermost, or most polarizable, electron subshell.

The apparent absence of ion displacement contributions in oxides is explained as a
consequence of the method though which polarizability data have been derived and the relative
magnitude of the Szigeti charge.

The new analysis offers, for the first time, the possibility of deriving a set of absolute
values for the low-frequency ‘in crystal’ polarizabilities of all ions for which there is a clearly
established valence state. These should permit more reliable calculations of the properties of
dielectric materials and a useful check for the modelling of their dynamical behaviour.

1. Introduction

The current importance of developments in the optical transmission of information and in
advanced computers has led to intense interest in the related properties of certain significant
materials, notably oxides, and especially in their dielectric behaviour. Progress has been
hampered, however, partly as a consequence of a lack of good experimental data and partly
through inadequate theoretical understanding.

Recently, a useful improvement in the quality of dielectric data for oxides has been
achieved by insisting on precision measurements from single-crystal samples of high purity
and cubic symmetry [1, 2]. Data from non-cubic crystals were only included if the dielectric
anisotropy was known.

Numerous checks on the internal consistency of this data set have been made [3–7] by
testing against the concept of the additivity of molecular polarizabilities as in, for example,

αD(M2M′O4) = αD(M
′O)+ αD(M2OssConmt3). (1)

For this purpose it was assumed that the low-frequency or dielectric polarizability,αD,
could be derived from the measured dielectric constant,ε0, through the Clausius–Mossotti
equation

αD = 3Vm
4π

(ε0− 1)

(ε0+ 2)
(2)
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whereVm is the volume per molecule andε0 is measured in the range 1 kHz–10 MHz.
This work has shown that, despite the neglect of a contribution from ion displacements in
equation (2) (in section 5 we consider the validity of this approximation), the difference
between the two sides of equation (1) is typically no more than 0.5–1.5% for a remarkably
extensive series of aluminates, beryllates, borates, gallates, silicates and phosphates.
Deviations greater than this could usually be traced to ferroelectricity, to ionic or electronic
conductivity or to the presence of impurities or other defects.

Some progress has also been achieved towards a deeper understanding of the factors
which determine dielectric behaviour by consideration of the concept of molecular
polarizabilities of complex substances as a sum of the constituent ion polarizabilities

α(AB2X4) = α(A2+)+ 2α(B3+)+ 4α(X2−) (3)

(for reasons explained below we assume that the ion polarizabilities involved here are
those appropriate to the environments provided by the structure of the material). Ion
polarizabilities, in principle, can be related to fundamental theory and are therefore
potentially powerful for analytical purposes but the decomposition of the sum is not
straightforward. At high frequencies, where extensive experimental data in the form of
refractive indices have been available for some time, a common practice has been to fix
the polarizability of one ion, for example by reference to theory, and then to derive the
polarizabilities of other ions on the basis of best fit to the data. This was the method
employed by Tessmanet al [8] to analyse the optical behaviour of the alkali halides and
alkaline earth chalcogenides. They chose to fixα∞ for Li+ with the idea that even a large
percentage error on such a small polarizability would lead to relatively smaller errors in
the polarizabilities of the larger ions. Variations on this method were subsequently used by
various authors [9–11] and many different sets of empiricalelectronic ion polarizabilities,
α∞, have now been derived.

In this paper we are concerned with the interpretation of experimental results at low fre-
quencies, that is, withdielectric ion polarizabilities,αD. We consider in particular the data
set derived by Shannon [2] using a least-squares fitting procedure and accurately determined
dielectric constants from the single crystals of more than 120 different oxides and 25 fluo-
rides. These values substituted into equation (3), it is to be noted, reproduce the molecular
polarizabilities of many of the compounds considered to an accuracy of about 1.0%.

As before, the values obtained for the ion polarizabilities depend to some extent on the
choice of reference. Shannon choseαD(B3+) = 0.05 Å3, which resulted in a value forαD
for O2− of 2.01 Å3. This is somewhat lower than had previously been supposed. On the
other hand, ifαD for O2− is much higher, the polarizabilities for B3+ and Be2+ come out
negative. Thus, acceptable polarizability values are limited to within quite a small range
and, when this fact is added to the predictive quality noted in the previous paragraph, it is
clear that there is a need for a proper basis for interpretation.

Classically, the polarizability of an ion is expected to be equal to the cube of its radius,
r (see, for example, the book by Dekker [12]), but which value of radius should be chosen
is not clear. Traditional ionic radii used by crystallographers are based on the assumption
that r(O2−) = 1.40 Å and very comprehensive tables of such radii [13] are now well
established. These radii, however, do not provide a good fit to the polarizability data and it
has been argued that the so called crystal radii [13], which are based onr(O2−) = 1.26 Å
and r(F−) = 1.19 Å, are more appropriate. Figure 1 shows that even then the scatter of
the experimental data is considerable, with the negative ions almost in accord with classical
expectations (αD = r3) but positive ions clustered about a line of much steeper slope—see
the remarks in section IIIB of the article by Shannon [2].
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Figure 1. Dielectric ion polarizabilityαD , according to Shannon [2], as a function of the cube
of the crystal radius of the ion concerned: data for the latter are taken from Shannon [13].

Finally, it is worth noting that there also exists a good quantum theory of atomic
polarizability [14–16], which seems to have been largely neglected—perhaps because it is
seen as too complicated or not directly amenable to comparison with experiment. However,
given the high quality of the new experimental data and the failure of the classical
interpretation, there is an impetus to reconcile these results with the predictions of the
quantum based model. It is the purpose of this paper to suggest means of overcoming the
outstanding difficulties of interpretation and to present a first step towards this reconciliation.

2. Choice of data set

As explained in the introduction, the starting point for our paper is the set of experimental
dielectric constants reviewed by Shannon [2] and, in particular, the values he thereby derived
for the dielectric polarizabilities of 60 different ions from the periodic table (for present
purposes we ignore OH−). An interesting feature of this analysis is that, despite acceptance
of the possibility that environmental effects might be important, it was shown that the
assumption of a variable oxygen polarizability (dependent on nearest-neighbour distance)
generally produces no more than a second-order correction to values derived by assuming
all ions possess a constant dielectric polarizability. The data summarized in column 2 of
our table 1 are therefore taken from column 2 of table III of Shannon [2]. However, as we
seek to correlate ion polarizabilities with their corresponding ionic radii and the latter are
known to possess significant environmental (i.e. co-ordination number) dependence [13], it
may be that the set of polarizabilities should have been derived with cations (as well as
oxygen ions) having different co-ordinations distinguished.

In column 3 of our table 1 we list the traditional crystallographic ionic radii of the ions
concerned (as each ion polarizability probably corresponds to some kind of average over
a variety of environments dominated by six fold co-ordination, we use the radii for six
fold co-ordination only) from the revised tables given by Shannon [13]. This collection of
radii, derived from analysis of the bond distances found in almost 1000 crystal structures,
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Table 1. Ion polarizability data and modified crystal radii.

Ion Pol. αD (Å3) Trad. Ion radius (̊A) Modified crystal radius,r (Å) r2 (Å2)

Li+ 1.20 0.76 0.96 0.922
Be2+ 0.19 0.45 0.65 0.423
B3+ 0.05 0.27 0.47 0.221

O2− 2.01 1.40 1.20 1.440
F− 1.62 1.33 1.13 1.277
Na+ 1.80 1.02 1.22 1.488
Mg2+ 1.32 0.720 0.920 0.846
Al 3+ 0.79 0.535 0.735 0.540
Si4+ 0.87 0.400 0.600 0.360
P5+ 1.22 0.38 0.58 0.336

K+ 3.83 1.38 1.58 2.496
Ca2+ 3.16 1.00 1.20 1.440
Sc3+ 2.81 0.745 0.945 0.893
Ti4+ 2.93 0.605 0.805 0.648
V5+ 2.92 0.54 0.74 0.548

Zn2+ 2.04 0.740 0.940 0.884
Ga3+ 1.50 0.620 0.820 0.672
Ge4+ 1.63 0.530 0.730 0.533
As5+ 1.72 0.46 0.66 0.436
Rb+ 5.29 1.52 1.72 2.958
Sr2+ 4.24 1.18 1.38 1.904
Y3+ 3.81 0.900 1.100 1.210
Zr4+ 3.25 0.72 0.92 0.846
Nb5+ 3.97 0.64 0.84 0.706

Cd2+ 3.40 0.95 1.15 1.323
In3+ 2.62 0.800 1.000 1.000
Sn4+ 2.83 0.690 0.890 0.792

Cs+ 7.43 1.67 1.87 3.50
Ba2+ 6.40 1.35 1.55 2.40

Lu3+ 3.64 0.861 1.061 1.126

is believed to be reliable to about±0.01 Å or better in the sense that they may be used
to predict unknown bond distances with this order of confidence. However, as Fumi and
Tosi [17] point out, the traditional radii do not have a good theoretical basis and, from a
fundamental point of view, one should perhaps expect better correlation with the crystal
radii as, indeed, was found by Shannon.

Shannon and Prewitt [18] have commented that the crystal radii only differ from
traditional radii by a constant viz. 0.14̊A—crystal radii for negative ions being smaller by
this amount and crystal radii for positive ions larger by the same quantity (the asymmetrical
treatment preserves agreement with experimentally determined bond lengths). These values
are believed to be closer to having absolute significance [13] but may still be not quite right,
i.e. there is scope for refinement of the correction constant. In section 4 we argue that this
possibility provides the natural parameter to optimize fit between theory and experiment.
The optimization procedure thus leads to a set of modified crystal radii and these are listed
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in column 4 of table 1. At this point it is sufficient to note that the latter differ from the
related traditional radii by 0.20̊A (i.e. correspond to a further correction of 0.06Å) with
the same sense as occurred with the previously accepted list of crystal radii.

3. The basis of the new analysis

The most complete quantum theory ofatomic polarizability is that of Buckingham [16], in
which such polarizabilities were calculated from Hartree self-consistent wave functions by
a method based on a perturbation treatment of the effect that an external uniform electric
field has on such a wave function. Despite the use of Hartree wave functions (which were
obtained without recourse to electron exchange), Buckingham’s expression accounts for
the change in the exchange interaction due to the external field. In the present analysis,
however, the simpler results of Slater and Kirkwood [14] and of Hellmann [15] are used.
For atoms or ions with closed shell electronic configurations they are given respectively as
limiting cases (i.e. ignoring the contribution form exchange) by Buckingham in the form

αD = 4a3
0

9N

{∑
n,e

νe〈r2〉n`,n`
}2

(IA)

αD = 4

9
a3

0

∑
n`

ν`〈r2〉2n,`,n` (IIA)

where the expectation value〈r2〉 is expressed in atomic units,n and` are principal and
orbital angular momentum quantum numbers respectively,ν` = 2(2` + 1) and a0 is the
radius of the first Bohr orbit of hydrogen in̊angstr̈oms.

The summations in these equations are over all the electron subshells, but if it can
be assumed that the outermost subshell makes the predominant contribution (some sources
claim more than 90% of contributions to polarizability originate from the outermost shell
[19, 20], a claim for which there is a good theoretical basis, see the appendix), then both
(IA) and (IIa) simplify to

αD = 4

9
a3

02(2`+ 1)[〈r2〉n,`]2 (4)

where, in this case, quantum numbersn, ` refer to the outermost subshell. Equation (4)
may then be re-arranged in the following manner

αD = 8

9
a0(2`+ 1)[a0〈r2〉]2. (5)

As we show in what follows and in our following paper (in preparation), it is equation (5)—
essentially the contribution to electronic polarizability of a single subshell—which provides
the new means for interpretation of the experimental dielectric data. In section 4 the result
is used to provide an immediate analysis for those ions which satisfy the assumed closed
shell electronic configuration. Our following paper then describes how equation (5) may
be modified to deal with cases where there are contributions from incomplete or several
subshells.

4. Application to ions with closed shell electronic configurations

There is an important general point concerning equation (5) which should be emphasized
in relation to the squared factor, [a0〈r2〉]2. As demonstrated in our appendix, it would be
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more correct to write this expression in the form

[a2
0〈r2〉]〈r2〉

because, strictly, it is a mean square radius for the electronic subshell concerned multiplied
by a dimensionless factor which arises from an oscillator strength. Overall, it may be
interpreted as a weighted mean square radius (in squareångstr̈oms if a0 is in ångstr̈oms)
which, as such, is not a directly accessible physical parameter. Nevertheless, it seems
reasonable to suppose that this form of mean square radius for an outer electron subshell
could be related to the square of a conventional ionic radius.

Therefore there is the implication from equation (5) firstly that polarizabilities derived
from experimental dielectric data should be plotted against thesquareof an appropriate ionic
radius rather than the cube (if contributions from ion displacements can be neglected—see
section 5), and secondly that one should optimize the fit through a systematic variation in
ion size.

Noting from Shannon’s experience that crystal radii rather than traditional radii correlate
better with polarizability data [1] and that these two measures of ionic size differ only by
a constant, as explained in section 2, it is plain that this constant provides the natural
parameter to be optimized. The different ionic radii are then, indeed, simultaneously varied
in a systematic way, for agreement with experimental bond lengths is maintained. Thus the
polarizability data have been fitted to the square of the modified crystal radii, the correction
to crystal radii having been derived through the optimization process described.

Figure 2 shows that the method leads to good agreement with the form of equation (5),
the experimental data being revealed as belonging to one or other of a quantized series of
straight lines whose successive slopes corresponding to` = 0, 1, 2, 3, are given by

8
9a0(2`+ 1)

i.e. the ion polarizabilities of Shannonet al are seen to provide direct experimental
evidence to support the quantum mechanical model. The problem of the apparently
different behaviour of the positive and negative ions, noted by Shannon [1, 2] is, moreover,
simultaneously resolved, but the apparent absence of ion displacement contributions to the
total polarizabilities needs to be explained.

5. Discussion

According to the analysis used by Sangster and Stoneham to interpret the dielectric behaviour
of oxides with rocksalt structure [21], the sum of the low-frequency anion and cation
polarizabilities in those compounds is given by

(α1+ α2) = α∞ + F−1
0 (Z − Z′)2 (6)

where

α∞ = 3Vm
4π

(
ε∞ − 1

ε∞ + 2

)
(7)

F0 = µw2
o

e2

ε0+ 2

ε∞ + 2
(8)

and ε0 and ε∞ are the static and high-frequency dielectric constants,wo the transverse
optical frequency (see, for example, the book by Cochran [22]),µ the reduced mass,Z
the ionic charge andZ′ the Szigeti charge (as defined by Sangsteret al [23]). In this
scheme the right-hand side of equation (6),α∞ + (Z − Z′)2/F0, represents the sum of
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Figure 2. Dielectric ion polarizabilities,αD , as a function of the square of the modified crystal
radii. Note that the straight lines in this figure are theoretical predictions for` = 0–3 according
to equation (5)—see the text.

the high-frequency polarizabilities and a correction term related to the ion displacements
respectively. The left-hand side of equation (6), so determined, is then taken to be a sum
of free ion polarizabilities.

By contrast, Shannon’s ion polarizabilities were derived through the use of the Clausius–
Mossotti equation (equation (2) of this paper) and it is by no means clear that his analysis
should give results comparable to those of Sangster and Stoneham. The theoretical basis
for the latter is explained by Sangsteret al [23] from whose equations (8) and (12) it can
be deduced that

3Vm
4π

(
ε0− 1

ε0+ 2

)
= (α1+ α2)+ 2Z

F0
(Z′ − Z/2). (9)

Thus it appears that Shannon’s ion polarizabilities are flawed through the systematic
neglect of the second term of the RHS of equation (9) which is part of the ion displacement
contribution to low-frequency polarizability. The importance of this second term, however,
depends on the factor(Z′ − Z/2) whose sign is determined by the relative magnitude
of the Szigeti chargeZ′. Sangster and Stoneham show that with oxides, whereZ = 2,
Z′ is sometimes larger and sometimes smaller thanZ/2—see column 1 of table 2. If
individual ion polarizabilities are deduced using the dielectric constants from a range of
compounds, where the ion displacement contribution is sometimes positive and sometimes
negative, it is evident that these deduced values can then be nearly free of contamination
by displacement terms despite the use of the Clausius–Mossotti equation. In this way the
good quantitative agreement between our theoretical model and the ion polarizability values
derived by Shannon may be understood.

Detailed inspection of table 1 reveals that, nevertheless, there are some discrepancies
between Shannon’s empirical results and the predictions of our model. In particular,
polarizabilities of ions supposed to possess larger valencies such as Y3+, Si4+, Zr4+ and
V5+ appear to be a rather poor fit. It is possible that these higher valence states do not truly
exist and, in fact, that such large deviations indicate the presence of covalency or some
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Table 2. The calculated sum of ion polarizabilities for oxides in cubicångstr̈oms: a comparison
with the work of Sangster and Stoneham [21].

S and S
(α1 + α2) (α1 + α2)

Z′ Eq. (6) Eq. (5)

MgO 1.198 2.466 3.22
CaO 1.177 3.986 4.06
SrO 1.191 5.021 4.72
BaO 1.376 5.768 5.42

MnO 1.033 4.269 4.28a

FeO 0.890 4.477 4.11
CoO 0.934 3.995 4.00
NiO 0.858 4.059 3.82

a Polarizabilities for transition ions taken from our next paper.

similar complicating factor as has been proposed in SiO2 [24]. On the other hand, it is
probably more significant that oxide structures formed with these ions tend to have local
environments with other than six fold co-ordination (see section 2).

Other sources of discrepancy may be associated with an erroneous assumption of an
r3 law or with erroneous inclusion of ferroelectric compounds in the dielectric data set. In
[6], for example, the polarizability of Fe3+ is obtained using the oxide additivity rule (as
in e.g. equation (1)) and by averaging over three ferrite compounds. Two of the latter (also
included in [2]), however, crystallize with the spinel structure and are believed to possess
permanent dipole moments [25–27]. As we show in our next paper [21], Shannon’s value
for the polarizability of Fe3+ seems to be too high.

There remains the question of the interpretation which should be given to the
polarizability sums(α1 + α1). Since in our theory each of the polarizabilities involved
is derived from a correspondingin crystal ionic radius we take the view that the resultant
sums must be sums ofin crystal polarizabilities. As noted previously, Sangsteret al [23]
interpret the same quantities which they derive for the alkali halides asfree ion sums, but
this is difficult to accept as equation (6) shows explicitly that (α1 + α2) contains a part of
the ion displacement contribution to low-frequency polarizability. (The full displacement
contribution isZ′2/F0 as may be seen by substituting for (α1+α2) in equation (9).) Indeed,
as Sangster and Stoneham [21] realized, the polarizability sums (α1 + α2) from oxides are
too high to be free ion values. Therefore we believe that the sums derived in [23] for the
alkali halides are alsoin crystal values.

Further support for the in crystal interpretation is given by the polarizability sums
(α1+ α2) obtained by Sangster and Stoneham using equation (6) and the experimental data
for the compounds they considered (shown in column 3 of table 2). With the exception of
MgO, there is a good correspondence between their results and the related sums calculated
from our model which appear in column 4.

Given that (α1 + α2) is an in crystal sum, environmental effects are to be expected,
and to take these into account through the procedure described by Sangsteret al [23]
is not straightforward. In this respect, the calculation using ionic radii can be shown to
have considerable advantages. Not only are the effects of co-ordination number already
well established [13] but, since the electronic contribution to molecular polarizability is
calculated separately for each ion in our model, it is evident that this method is easily



Oxide dielectric data 6745

extended to cover (cubic) compounds where ions occur with a variety of environments.
Provided experimental data are then available to determineF0 and the Szigetti charge,Z′,
the low-frequency dielectric constant may be derived through a suitably modified form of
equation (9).

Because in our analysis Shannon’s polarizability data have been directly related to
quantum theory, albeit in simplified form, it is evident that there is now the basis for
achieving a data set with absolute significance. This has some importance, for example,
for the modelling of defect properties where the reliability of predictions has been shown
to depend sensitively upon the quality of the interatomic potentials used in the simulations
[29, 30]. In this context, it is worth noting that the property of transferability so valuable
for defect calculations [21, 28] is retained by polarizability in our model, if proper respect
is paid to co-ordination.

We note, finally, that there is a more than superficial resemblance between our theory
and the shell models used to describe lattice dynamical behaviour. Shell charges found from
fitting the latter to experimentally determined phonon dispersion curves tend to be smaller
than the charges associated with the outermost electronic subshell (see, for example, [23])
but it may be that further investigation will reveal a closer connection. The present results
should thus provide a useful check for the modelling of the dynamics of dielectric materials.
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Appendix

According to classical theory for free ions (see Kittel [31], for example) the low-frequency
or dielectric polarizabilityper electronis given by an expression of the form

αD = e2

mw2
k

(A1)

where e and m are electronic charge and mass respectively andwk is an absorption
frequency. This is equivalent to writing

αD = e2h̄2

mW 2
k

= e4

W 2
k

a0 (A2)

as the first Bohr radius of hydrogena0 = h̄2/me2. Wk is then the energy of the state
corresponding to resonant frequencywk.

If the dipole moment here is imagined as arising from the application of a low-frequency
electric field in, say, thex-direction, it is plain that equation (A2) could also be re-written
as

αD = a0[x2].

Thus, in terms of the mean radius,r, of the electron orbit concerned, if

r2 = x2+ y2+ z2

and statistically,

[x2] = [y2] = [z2] = 1
3[r2]
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where square brackets denote a time average, equation (A2) becomes

αD = 1
3a0[r2]

i.e.

αD = 1
3a

3
0[r2] (A3)

if r is expressed in dimensionless atomic units.
As emphasized previously, this is the dielectric polarizabilityper electron. For an

electron subshell with 2(2`+ 1) electrons, the dielectric polarizability is

αD = 2
3a

3
0(2`+ 1)[r2]. (A4)

For the corresponding result in quantum theory (the Kramers–Heisenberg dispersion
formula) we observe firstly that the time average [r2] should be replaced by the matrix
element of the same quantity for thekth electronic transition [32] i.e.〈r2〉, where

[r2] = 2〈r2〉. (A5)

Secondly, the quantum expression includes a factorfk, which is theoscillator strengthfor
the electronic transition corresponding to frequencywk, where

fk = 2m

e2h̄
wkM

2
km (A6)

andMkm is the matrix component of the dipole moment between statesk andm.
Note that quantityf is dimensionlessi.e. a pure numerical fraction. Indeed, a well

known result in quantum theory, thesum rule, states that for a given atom ‘the sum of the
oscillator strengths over all possible electronic transitions equals unity’, i.e.∑

k

fk = 1.

By substituting forM in equation (A6) it is possible to re-express this equation in the form

fk = 2
3〈r2〉 (A7)

where〈r2〉 here is again dimensionless.
If now both (A5) and (A7) are incorporated into equation (A4) it is easily seen that this

equation in quantum form must be

αD = 4
3a0(2`+ 1)[a2

0〈r2〉]fk (A8)

which, after substituting forfk, comes out as

αD = 8
9a0(2`+ 1)[a0〈r2〉]2 (A9)

i.e. identical to equation (5) of section 3. Note, however, that the second dimensionless factor
〈r2〉 has arisen fromfk, the oscillator strength. Thus the contribution to the polarizability of
the atom from the electronic subshell concerned is proportional to its mean square radius.
There is no theoretical basis in quantum theory for assuming a cube law.

The reason for the dominance of the contribution of the outermost electron subshell to
the polarizability of an ion, exploited in section 3, is now also made plain. To echo the
words of a remark from many years ago [33] ‘In the sum (over all orbits—our equation (5)),
one term, corresponding to the principal absorption from the ground state, generally makes
by far the largest contribution. That is, its oscillator strengthfk is somewhat near unity, the
others being much smaller’.



Oxide dielectric data 6747

References

[1] Shannon R D 1990 Proc. Int. Conf. on Chemistry of Electronic Ceramic Materials (Jackson Hole, WY)
(National Institute of Standards and Technology Special Publication 804) pp 457–69

[2] Shannon R D 1993J. Appl. Phys.73 348–66
[3] Shannon R D and Subramanian M A 1989 Phys. Chem. Miner.16 747–51
[4] Subramanian M A and Shannon R D 1989Mater. Res. Bull.24 1477–83
[5] Shannon R D, Subramanian M A, Allik T H, Kimura H, Kokta M R, Randles M H and Rossman G R 1990

J. Appl. Phys.67 3798–802
[6] Shannon R D, Oswald R A, Allik T H, Damen J P M, Mateika D, Wechsler B A and Rossman G R 1991

J. Solid State Chem.95 313–18
[7] Shannon R D, Subramanian M A, Hosoya S and Rossman G R 1991Phys. Chem. Miner.18 1–6
[8] Tessman J, Khan A and Shockley W 1953Phys. Rev.92 890–5
[9] Pirenne J and Kartheuser E 1964Physica20 2005–18

[10] Boswava I M 1970Phys. Rev.B 1 1698–701
[11] Coker H 1976J. Phys. Chem.80 2078–84
[12] Dekker A J 1958Solid State Physics(London: Macmillan) pp 134–6
[13] Shannon R D 1976Acta Crystallogr.A 32 751–67
[14] Slater J C and Kirkwood J G 1931Phys. Rev.37 682–97
[15] Hellman H 1935Acta Physicochem. USSR2 273–90
[16] Buckingham R A 1937Proc. R. Soc.A 160 94–113
[17] Fumi F G and Tosi M P 1964J. Phys. Chem. Solids25 31–43
[18] Shannon R D and Prewitt C T 1969Acta Crystallogr.B 25 925–45
[19] Sternheimer R M 1954Phys. Rev.96 951
[20] Fowler P W, Knowles P J and Pyper N C 1985Mol. Phys.56 83–95
[21] Sangster M J L andStoneham A M 1981 Phil. Mag. 43 597–608
[22] Cochran W 1973The Dynamics of Atoms in Crystals(London: Arnold) pp 30–7
[23] Sangster M J L, Schr̈oder U and Atwood R M 1978J. Phys. C: Solid State Phys.11 1523–40
[24] Nada R, Catlow C R A, Dovesi R and Pisani C 1990Phys. Chem. Miner.17 353–62
[25] Grimes N W 1973J. Phys. C: Solid State Phys.6 L78–L79
[26] Grimes N W 1974Proc. R. Soc.A 338 223–33
[27] Grimes N W 1992J. Phys.: Condens. Matter4 L567–L570
[28] Sangster M J L andAtwood R M 1978J. Phys. C: Solid State Phys.11 1541–54
[29] Catlow C R A, Freeman C M, Islam M S, Jackson R A, Leslie M and Tomlinson S M 1988Phil. Mag. 58

123–41
[30] Cormack A N 1988 Adv. Ceram.23
[31] Kittel C 1971 Introduction to Solid State Physics4th edn (New York: Wiley) p 462
[32] Heitler W 1954The Quantum Theory of Radiation(Oxford: Clarendon) p 179
[33] Slater J C 1951Quantum Theory of Matter(New York: McGraw-Hill) pp 388–96


